15.2	Entropy	and	spontaneit	٧
 _	Litti Op :	y arra	Sportancie	y

> More Simp

Which reaction has the greatest positive entropy change? 1.

a. CH4(g) + 11/202(g) - (CO(g)) 2H2O(g) 25 moles - 3 moles (a 11 g x)

DK CH4(g) + 1½O2(g) → CO(g) + 2H2O(l) 2.5 moles -> 3 moles (-> e)

c. CH4(g) + 2O2(g) + CO2(g) + 2H2O(g) 3 moles (all gas)

> CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) 3 moles → 3 moles (→ 1)

2. Some chlorine gas is placed in a flask of fixed volume at room temperature. Which change will cause a decrease in entropy?

a. Adding a small amount of hydrogen b. Adding a small amount of chlorine in Cross of Particles

c. Cooling the flask - creating more order (g->2)
d. Exposing the flask to sunlight adding temp

3. Identify the process expected to have a value of ΔS closest to zero?

a. C2H4(g) +H2(g) → C2H6(g) ∠ Moler -> I mole

b. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ 2 moles (all gas) c. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ | mole \rightarrow 2 moles (s \rightarrow g) d. $H_2O(l) \rightarrow H_2O(g)$ (\rightarrow 9

4. Predict the entropy change ΔS for the following reactions.

a. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \land 5 - 4mels - 2mels$

b. 3Fe(s) + 4H2O(g) → Fe3O4(s) +4H2(g) △5- more complex iron 7mg/s → 2mals

c. $Ba(OH)_2*8H_2O(s) + 2NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2NH_3(aq) + 10H_2O(1)$

30015 -> 13 males 5-7 +4/2

5. Which is the best description of the entropy and enthalpy changes accompanying the sublimations of iodine: $I_2(s) \rightarrow I_2(g)$?

a. $\Delta S+$, $\Delta H+$, reaction is endothermic $S \rightarrow g (45)$ breaking IMF

b. $\Delta S+$, $\Delta H-$, reaction is exothermic

c. ΔS -, ΔH +, reaction is endothermic

d. ΔS -, ΔH -, reaction is exothermic

P9 252 V Calculate the entropy change ΔS for the Haber process shown from tabulated standard molar entropies at 25°C.

> $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ 1(191) 3(121) 2(193)

$$\Delta S_{rm} = \{ \Delta S_p - \{ \Delta S_r \} \}$$

$$= 2(193) - [191 + 3(131)]$$

$$= -198 \} [67] mil = -198$$

7. Under what circumstances is a reaction spontaneous at all temperatures?

	ΔH^{Θ}	ΔS^{Θ}
A.	+	+
В.	+	<u> </u>
C.	_	-
D.	_	+

8. For the process: $C_6H_6(1) \rightarrow C_6H_6(s)$

The standard entropy and enthalpy changes are:

$$\Delta H^{\Theta} = -9.83 \text{kJ mol}^{-1} \text{ and } \Delta S^{\Theta} = -35.2 \text{J K mol}^{-1}$$
.

a. Predict and explain the effect of an increase in temperature on the spontaneity of the process.

b. $\Delta H^{\Theta} = -9.83 \text{ kJ mol}^{-1}$ and $\Delta S^{\Theta} = -35.2 \text{J K}^{-1} \text{ mol}^{-1}$. Calculate the temperature (in °C) at which $\Delta G = 0$ for the above process and explain the significance of this temperature.

- 9. The ΔH^{Θ} and ΔS^{Θ} values for a certain reaction are both positive. Which statement is correct about the spontaneity of this reaction at different temperatures?
 - a. It will be spontaneous at all temperatures.
 - b. It will be spontaneous at high temperatures but not at low temperatures.
 - c. It will be spontaneous at low temperatures but not at high temperatures.
 - d. It will not be spontaneous at any temperature.

 $\Delta G = -7\Delta S$ & high temps is (overames $\Delta H +$)

10. Explain in terms of ΔG^{Θ} , why a reaction for which both ΔH^{Θ} and ΔS^{Θ} values are positive can sometimes be spontaneous and sometimes not.

11. Consider the following reaction.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

(i) Use values from section 11 in the Data Booklet to calculate the enthalpy change, H^{Θ} , for this reaction.

(ii) The magnitude of the entropy change, ΔS , at 27 °C for the reaction is 62.7 J K⁻¹ mol⁻¹. State, with a reason, the sign of ΔS .

(iii) Calculate ΔG for the reaction at 27 °C and determine whether this reaction is spontaneous at this temperature.

12. The equation for the decomposition of calcium carbonate is given below.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

At 500 K, ΔH for this reaction is +177 kJ mol⁻¹ and ΔS is 161 J K⁻¹ mol⁻¹.

(a) Explain why ΔH for the reaction above cannot be described as $\Delta H_{\mathbf{f}}^{\Theta}$.

(b) State the meaning of the term ΔS .

(c) Calculate the value of ΔG at 500 K and determine, giving a reason, whether or not the reaction will be spontaneous

- 13. The standard enthalpy change for the combustion of phenol, $C_6H_5OH(s)$, is $-3050 \text{ kJ mol}^{-1}$ at 298 K.
 - (a) Write an equation for the complete combustion of phenol.

(b) The standard enthalpy changes of formation of carbon dioxide, $CO_2(g)$, and of water, $H_2O(1)$, are -394 kJ mol⁻¹ and -286 kJ mol⁻¹ respectively.

Calculate the standard enthalpy change of formation of phenol, C₆H₅OH(s).

(b) The standard entropy change of formation, ΔS^{Θ} , of phenol, C₆H₅OH(s) at 298 K is -385 J K⁻¹ mol ⁻¹. Calculate the standard free energy change of formation, ΔG^{Θ} , of phenol at 298 K.

(c) Determine whether the reaction is spontaneous at 298 K, and give a reason.

(e) Predict the effect, if any, of an increase in temperature on the spontaneity of this reaction.